Scale-dependent contributions from turbulent motions to the wall-shear stress in rough-wall open channel flows | Journal of Fluid Mechanics | Cambridge Core
Anderson, W., Barros, J.M., Christensen, K.T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316–347.10.1017/jfm.2015.91CrossRefGoogle Scholar
Bagherimiyab, F. & Lemmin, U. 2013 Shear velocity estimates in rough-bed open-channel flow. Earth Surf. Process. Landf. 38 (14), 1714–1724.10.1002/esp.3421CrossRefGoogle Scholar
Balachandar, R. & Patel, V.C. 2002 Rough wall boundary layer on plates in open channels. J. Hydraul. Engng 128 (10), 947–951.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 365 (1852), 665–681.10.1098/rsta.2006.1940CrossRefGoogle ScholarPubMed
Bannier, A., Garnier, É. & Sagaut, P. 2015 Riblet flow model based on an extended fik identity. Flow Turbul. Combust. 95 (2–3), 351–376.10.1007/s10494-015-9624-2CrossRefGoogle Scholar
Barros, J.M. & Christensen, K.T. 2019 Characteristics of large-scale and superstructure motions in a turbulent boundary layer overlying complex roughness. J. Turbul. 20 (2), 147–173.10.1080/14685248.2019.1595634CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 1987 In Random Data: Analysis and Measurement Procedures. Wiley Publishing.Google Scholar
Bomminayuni, S. & Stoesser, T. 2011 Turbulence statistics in an open-channel flow over a rough bed. J. Hydraul. Eng. 137 (11), 1347–1358.10.1061/(ASCE)HY.1943-7900.0000454CrossRefGoogle Scholar
Cameron, S.M., Nikora, V.I. & Stewart, M.T. 2017 Very-large-scale motions in rough-bed open-channel flow. J. Fluid Mech. 814, 416–429.10.1017/jfm.2017.24CrossRefGoogle Scholar
Christodoulou, G.C. 2014 Equivalent roughness of submerged obstacles in open-channel flows. J. Hydraul. Engng 140 (2), 226–230.10.1061/(ASCE)HY.1943-7900.0000801CrossRefGoogle Scholar
Coscarella, F., Penna, N., Servidio, S. & Gaudio, R. 2020 Turbulence anisotropy and intermittency in open-channel flows on rough beds. Phys. Fluids 32 (11), 115127.10.1063/5.0028119CrossRefGoogle Scholar
Deck, S., Renard, N., Laraufie, R. & Weiss, P. 2014 Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to 13650. J. Fluid Mech. 743, 202–248.10.1017/jfm.2013.629CrossRefGoogle Scholar
Dey, S. & Das, R. 2012 Gravel-bed hydrodynamics: double-averaging approach. J. Hydraul. Engng 138 (8), 707–725.10.1061/(ASCE)HY.1943-7900.0000554CrossRefGoogle Scholar
Dittrich, A. & Koll, K. 1997 Velocity field and resistance of flow over rough surfaces with large and small relative submergence. Intl J. Sediment Res. 12 (3), 21–33.Google Scholar
Duan, Y.C., Chen, Q.G., Li, D.X. & Zhong, Q. 2020 Contributions of very large-scale motions to turbulence statistics in open channel flows. J. Fluid Mech. 892, A3.10.1017/jfm.2020.174CrossRefGoogle Scholar
Duan, Y.C., Zhong, Q., Wang, G.Q., Zhang, P. & Li, D.X. 2021 Contributions of different scales of turbulent motions to the mean wall-shear stress in open channel flows at low-to-moderate reynolds numbers. J. Fluid Mech. 918, A40.10.1017/jfm.2021.236CrossRefGoogle Scholar
Ferguson, R. 2007 Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 43 (5), W05427.10.1029/2006WR005422CrossRefGoogle Scholar
Ferguson, R.I. 2021 Roughness calibration to improve flow predictions in coarse-bed streams. Water Resour. Res. 57 (6), e2021WR029979.10.1029/2021WR029979CrossRefGoogle Scholar
Franca, M.J. & Lemmin, U. 2006 Eliminating velocity aliasing in acoustic Doppler velocity profiler data. Meas. Sci. Technol. 17 (2), 313–322.10.1088/0957-0233/17/2/012CrossRefGoogle Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73–L76.10.1063/1.1516779CrossRefGoogle Scholar
Giménez-Curto, L.A. & Corniero, M.A. 2002 Flow characteristics in the interfacial shear layer between a fluid and a granular bed. J. Geophys. Res.: Oceans 107 (C5), 3044.10.1029/2000JC000729CrossRefGoogle Scholar
Grass, A.J. 1991 Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries. Phil. Trans. R. Soc. Lond. A: Phys. Engng Sci. 336 (1640), 35–65.Google Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554 (1), 521.10.1017/S0022112006008871CrossRefGoogle Scholar
Hommema, S.E. & Adrian, R.J. 2003 Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol. 106 (1), 147–170.10.1023/A:1020868132429CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173–196.10.1146/annurev.fluid.36.050802.122103CrossRefGoogle Scholar
Jing, S.Y., Duan, Y.C. & Li, D.X. 2023 A quantitative study on the turbulent kinetic energy redistribution in the near free-water-surface region of open channel flows. AIP Adv. 13 (3), 035129.10.1063/5.0138423CrossRefGoogle Scholar
Kametani, Y., Fukagata, K., Örlü, R. & Schlatter, P. 2015 Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Intl J. Heat Fluid Flow 55, 132–142.10.1016/j.ijheatfluidflow.2015.05.019CrossRefGoogle Scholar
Kametani, Y. & Fukugata, K. 2011 Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154–172.10.1017/jfm.2011.219CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417–422.10.1063/1.869889CrossRefGoogle Scholar
Kironoto, B.A. & Graf, W.H. 1994 Turbulence characteristics in rough uniform open-channel flow. Proc. Inst. Civil Engnrs - Water Maritime Energy 106 (4), 333–344.10.1680/iwtme.1994.27234CrossRefGoogle Scholar
Kuwata, Y. & Kawaguchi, Y. 2018 Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres. Intl J. Adv. Engng Sci. Appl. Maths 10 (4), 263–272.10.1007/s12572-018-0223-zCrossRefGoogle Scholar
Ligrani, P.M. & Moffat, R.J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162 (1), 69.10.1017/S0022112086001933CrossRefGoogle Scholar
Ma, G.Z., Xu, C.X., Sung, H.J. & Huang, W.X. 2023 Secondary motions and wall-attached structures in a turbulent flow over a random rough surface. Intl J. Heat Fluid Flow 102, 109147.10.1016/j.ijheatfluidflow.2023.109147CrossRefGoogle Scholar
Manes, C., Pokrajac, D. & McEwan, I. 2007 Double-averaged open-channel flows with small relative submergence. J. Hydraul. Engng 133 (8), 896–904.10.1061/(ASCE)0733-9429(2007)133:8(896)CrossRefGoogle Scholar
Mazzuoli, M. & Uhlmann, M. 2017 Direct numerical simulation of open-channel flow over a fully rough wall at moderate relative submergence. J. Fluid Mech. 824, 722–765.10.1017/jfm.2017.371CrossRefGoogle Scholar
Mehdi, F., Johansson, T.G., White, C.M. & Naughton, J.W. 2013 On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55 (1), 1656.10.1007/s00348-013-1656-6CrossRefGoogle Scholar
Mehdi, F. & White, C.M. 2011 Integral form of the skin friction coefficient suitable for experimental data. Exp. Fluids 50 (1), 43–51.10.1007/s00348-010-0893-1CrossRefGoogle Scholar
Nezu, I. 2005 Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraul. Engng 131 (4), 229–246.10.1061/(ASCE)0733-9429(2005)131:4(229)CrossRefGoogle Scholar
Nikora, V., Ballio, F., Coleman, S. & Pokrajac, D. 2013 Spatially averaged flows over mobile rough beds: definitions, averaging theorems, and conservation equations. J. Hydraul. Engng 139 (8), 803–811.10.1061/(ASCE)HY.1943-7900.0000738CrossRefGoogle Scholar
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng 127 (2), 123–133.10.1061/(ASCE)0733-9429(2001)127:2(123)CrossRefGoogle Scholar
Nikora, V., McEwan, I., McLean, S., Coleman, S., Pokrajac, D. & Walters, R. 2007 a Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133 (8), 873–883.10.1061/(ASCE)0733-9429(2007)133:8(873)CrossRefGoogle Scholar
Nikora, V., McLean, S., Coleman, S., Pokrajac, D., McEwan, I., Campbell, L., Aberle, J., Clunie, D. & Koll, K. 2007 b Double-averaging concept for rough-bed open-channel and overland flows: applications. J. Hydraul. Engng 133 (8), 884–895.CrossRefGoogle Scholar
Nikora, V.I. & Smart, G.M. 1997 Turbulence characteristics of new zealand gravel-bed rivers. J. Hydraul. Engng 123 (9), 764–773.10.1061/(ASCE)0733-9429(1997)123:9(764)CrossRefGoogle Scholar
Nikora, V.I., Stoesser, T., Cameron, S.M., Stewart, M., Papadopoulos, K., Ouro, P., McSherry, R., Zampiron, A., Marusic, I. & Falconer, R.A. 2019 Friction factor decomposition for rough-wall flows: theoretical background and application to open-channel flows. J. Fluid Mech. 872, 626–664.10.1017/jfm.2019.344CrossRefGoogle Scholar
Papadopoulos, K., Nikora, V., Cameron, S., Stewart, M. & Gibbins, C. 2019 Spatially-averaged flows over mobile rough beds: equations for the second-order velocity moments. J. Hydraul. Res. 58 (1), 133–151.10.1080/00221686.2018.1555559CrossRefGoogle Scholar
Peet, Y. & Sagaut, P. 2009 Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21 (10), 105105.10.1063/1.3241993CrossRefGoogle Scholar
Peruzzi, C., Poggi, D., Ridolfi, L. & Manes, C. 2020 On the scaling of large-scale structures in smooth-bed turbulent open-channel flows. J. Fluid Mech. 889, A1.10.1017/jfm.2020.73CrossRefGoogle Scholar
Qi, M.L., Li, J.Z., Chen, Q.G. & Zhang, Q.F. 2018 Roughness effects on near-wall turbulence modelling for open-channel flows. J. Hydraul. Res. 56 (5), 648–661.10.1080/00221686.2017.1399931CrossRefGoogle Scholar
Raupach, M.R., Antonia, R.A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 1–25.10.1115/1.3119492CrossRefGoogle Scholar
Renard, N. & Deck, S. 2016 A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer. J. Fluid Mech. 790, 339–367.10.1017/jfm.2016.12CrossRefGoogle Scholar
Rodríguez, J.F. & García, M.H. 2008 Laboratory measurements of 3-d flow patterns and turbulence in straight open channel with rough bed. J. Hydraul. Res. 46 (4), 454–465.10.3826/jhr.2008.2994CrossRefGoogle Scholar
SaemI, S., Raisee, M., Cervantes, M.J. & Nourbakhsh, A. 2018 Computation of two- and three-dimensional water hammer flows. J. Hydraul. Res. 57 (3), 386–404.10.1080/00221686.2018.1459892CrossRefGoogle Scholar
Scarano, F. 2001 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13 (1), R1–R19.10.1088/0957-0233/13/1/201CrossRefGoogle Scholar
Schultz, M.P. & Flack, K.A. 2003 Turbulent boundary layers over surfaces smoothed by sanding. J. Fluids Engng 125 (5), 863–870.10.1115/1.1598992CrossRefGoogle Scholar
Sciacchitano, A. & Wieneke, B. 2016 Piv uncertainty propagation. Meas. Sci. Technol. 27 (8), 084006.10.1088/0957-0233/27/8/084006CrossRefGoogle Scholar
Senthil, S., Kitsios, V., Sekimoto, A., Atkinson, C. & Soria, J. 2020 Analysis of the factors contributing to the skin friction coefficient in adverse pressure gradient turbulent boundary layers and their variation with the pressure gradient. Intl J. Heat Fluid Flow 82, 108531.10.1016/j.ijheatfluidflow.2019.108531CrossRefGoogle Scholar
Shen, Y., Yang, S. & Liu, J. 2023 Characteristics of very large-scale motions in rough-bed open-channel flows. Water-SUI 15 (7), 1433.Google Scholar
Singh, K.M., Sandham, N.D. & Williams, J.J.R. 2007 Numerical simulation of flow over a rough bed. J. Hydraul. Engng 133 (4), 386–398.10.1061/(ASCE)0733-9429(2007)133:4(386)CrossRefGoogle Scholar
Smart, G.M. & Habersack, H.M. 2007 Pressure fluctuations and gravel entrainment in rivers. J. Hydraul. Res. 45 (5), 661–673.10.1080/00221686.2007.9521802CrossRefGoogle Scholar
Song, T., Graf, W.H. & Lemmin, U. 1994 Uniform flow in open channels with movable gravel bed. J. Hydraul. Res. 32 (6), 861–876.10.1080/00221689409498695CrossRefGoogle Scholar
Squire, D.T., Morrill-Winter, C., Hutchins, N., Schultz, M.P., Klewicki, J.C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210–240.10.1017/jfm.2016.196CrossRefGoogle Scholar
Stroh, A., Frohnapfel, B., Schlatter, P. & Hasegawa, Y. 2015 A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27 (7), 075101.10.1063/1.4923234CrossRefGoogle Scholar
Tay, F.K., Kuhn, C.S. & Tachie, F. 2013 Surface roughness effects on the turbulence statistics in a low Reynolds number channel flow. J. Turbul. 14 (1), 121–146.10.1080/14685248.2012.737468CrossRefGoogle Scholar
Townsend, A.A.R. 1976 the Structure of Turbulent Shear Flow. Cambridge University press.Google Scholar
Wu, Y. & Christensen, K.T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380–418.10.1017/S0022112010000960CrossRefGoogle Scholar
Yao, J., Chen, X. & Hussain, F. 2022 Direct numerical simulation of turbulent open channel flows at moderately high Reynolds numbers. J. Fluid Mech. 953, A19.10.1017/jfm.2022.942CrossRefGoogle Scholar
Yoon, M., Ahn, J., Hwang, J. & Sung, H.J. 2016 Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows. Phys. Fluids 28 (8), 081702.10.1063/1.4961331CrossRefGoogle Scholar
Zampiron, A., Cameron, S. & Nikora, V. 2020 Secondary currents and very-large-scale motions in open-channel flow over streamwise ridges. J. Fluid Mech. 887, A17.10.1017/jfm.2020.8CrossRefGoogle Scholar
Zampiron, A., Cameron, S.M., Stewart, M.T., Marusic, I. & Nikora, V.I. 2023 Flow development in rough-bed open channels: mean velocities, turbulence statistics, velocity spectra, and secondary currents. J. Hydraul. Res. 61 (1), 133–144.10.1080/00221686.2022.2132311CrossRefGoogle Scholar